Medial amygdalar aromatase neurons regulate aggression in both sexes.

نویسندگان

  • Elizabeth K Unger
  • Kenneth J Burke
  • Cindy F Yang
  • Kevin J Bender
  • Patrick M Fuller
  • Nirao M Shah
چکیده

Aromatase-expressing neuroendocrine neurons in the vertebrate male brain synthesize estradiol from circulating testosterone. This locally produced estradiol controls neural circuits underlying courtship vocalization, mating, aggression, and territory marking in male mice. How aromatase-expressing neuronal populations control these diverse estrogen-dependent male behaviors is poorly understood, and the function, if any, of aromatase-expressing neurons in females is unclear. Using targeted genetic approaches, we show that aromatase-expressing neurons within the male posterodorsal medial amygdala (MeApd) regulate components of aggression, but not other estrogen-dependent male-typical behaviors. Remarkably, aromatase-expressing MeApd neurons in females are specifically required for components of maternal aggression, which we show is distinct from intermale aggression in pattern and execution. Thus, aromatase-expressing MeApd neurons control distinct forms of aggression in the two sexes. Moreover, our findings indicate that complex social behaviors are separable in a modular manner at the level of genetically identified neuronal populations.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Neural sensitivity to sex steroids predicts individual differences in aggression: implications for behavioural evolution.

Testosterone (T) regulates many traits related to fitness, including aggression. However, individual variation in aggressiveness does not always relate to circulating T, suggesting that behavioural variation may be more closely related to neural sensitivity to steroids, though this issue remains unresolved. To assess the relative importance of circulating T and neural steroid sensitivity in pre...

متن کامل

Medial geniculate lesions block amygdalar and cingulothalamic learning-related neuronal activity.

This study assessed the role of the thalamic medial geniculate (MG) nucleus in discriminative avoidance learning, wherein rabbits acquire a locomotory response to a tone [conditioned stimulus (CS)+] to avoid a foot shock, and they learn to ignore a different tone (CS-) not predictive of foot shock. Limbic (anterior and medial dorsal) thalamic, cingulate cortical, or amygdalar lesions severely i...

متن کامل

Subpopulations of somatostatin-immunoreactive non-pyramidal neurons in the amygdala and adjacent external capsule project to the basal forebrain: evidence for the existence of GABAergic projection neurons in the cortical nuclei and basolateral nuclear complex

The hippocampus and amygdala are key structures of the limbic system whose connections include reciprocal interactions with the basal forebrain (BF). The hippocampus receives both cholinergic and GABAergic afferents from the medial septal area of the BF. Hippocampal projections back to the medial septal area arise from non-pyramidal GABAergic neurons that express somatostatin (SOM), calbindin (...

متن کامل

Persistent activation of select forebrain regions in aggressive, adolescent cocaine-treated hamsters.

Hamsters repeatedly exposed to cocaine throughout adolescence display highly escalated offensive aggression compared to saline-treated littermates. The current study investigated whether adolescent cocaine exposure activated neurons in areas of hamster forebrain implicated in aggressive behavior by examining the expression of FOS, i.e., the protein product of the immediate early gene c-fos show...

متن کامل

Amygdalar lesions block discriminative avoidance learning and cingulothalamic training-induced neuronal plasticity in rabbits.

Learning to fear dangerous situations requires the participation of neurons of the amygdala. Here it is shown that amygdalar neurons are also involved in learning to avoid dangerous situations. Amygdalar lesions severely impaired the acquisition of acoustically cued, discriminative instrumental avoidance behavior of rabbits. In addition, the development of anterior cingulate cortical and medial...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Cell reports

دوره 10 4  شماره 

صفحات  -

تاریخ انتشار 2015